Ultrafast Excited-state Proton Transfer Processes: Energy Surfaces and On-the-fly Dynamics Simulations*
نویسندگان
چکیده
The excited-state intramolecular proton transfer (ESIPT) is reviewed for several benchmark systems [o-hydroxybenzaldehyde (OHBA), salicylic acid and 2-(2′-hydroxyphenyl)-benzothiazole (HBT)] in order to verify the applicability of the time-dependent density functional theory (TDDFT) and the resolution-of-the-identity approximate second-order coupled cluster (RI-CC2) methods. It was found that these approaches are very well suited for the description of ESIPT processes. A comparative investigation of previous and new excited-state dynamics simulations is performed for HBT, 10-hydroxybenzo[h]quinoline (HBQ), and [2,2′-bipyridyl]-3,3′-diol (BP(OH)2). The time scale for the ESIPT process in these systems ranges in the time interval of 30−40 fs for HBT and HBQ and amounts to about 10 fs for the first proton transfer step in BP(OH)2. The dynamics simulations also show that the proton transfer in HBT is strongly supported by skeletal modes and the proton plays a rather passive role, whereas in HBQ a semipassive mechanism is found due to its increased rigidity in comparison to HBT. The special role of the double proton transfer in BP(OH)2 is discussed as well.
منابع مشابه
Influence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کاملTheoretical insights into the photo-protective mechanisms of natural biological sunscreens: building blocks of eumelanin and pheomelanin.
Eumelanin (EM) and pheomelanin (PM) are ubiquitous in mammalian skin and hair--protecting against harmful radiation from the sun. Their primary roles are to absorb solar radiation and efficiently dissipate the excess excited state energy in the form of heat without detriment to the polymeric structure. EU and PM exist as polymeric chains consisting of exotic arrangements of functionalised heter...
متن کاملSemiclassical molecular dynamics simulations of excited state double-proton transfer in 7-azaindole dimers
An ab initio excited state potential energy surface is constructed for describing excited state double proton transfer in the tautomerization reaction of photo-excited 7-azaindole dimers, and the ultrafast dynamics is simulated using the semiclassical ~SC! initial value representation ~IVR!. The potential energy surface, determined in a reduced dimensionality, is obtained at the CIS level of qu...
متن کاملHybrid QM/QM Simulations of Excited-State Intramolecular Proton Transfer in the Molecular Crystal 7-(2-Pyridyl)-indole.
A subtractive implementation of the QM/QM hybrid method for the description of photochemical reactions occurring in molecular crystals is presented and tested by applying it in a simulation study of the ultrafast intramolecular excited-state proton transfer reaction in the crystal form of 7-(2-pyridyl)-indole, an organic compound featuring an intramolecular hydrogen bond within a six-membered r...
متن کاملQuantum Dynamics of the Excited-State Intramolecular Proton Transfer in 2-(2¢-Hydroxyphenyl)benzothiazole
The excited-state intramolecular proton-transfer dynamics and photoabsorption associated with the ketoenolic tautomerization reaction in 2-(2¢-hydr oxyphenyl)benzothiazole are simulated according to a numerically exact quantumdynamics propagation method and a full-dimensional excited-state potential energy surface based on an ab initio reaction surface Hamiltonian. The simulations involve the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009